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PHOTOELECTRON EMISSION SPECTROSCOPY OF INORGANIC CATIONS IN AQUEOUS SOLUTION
PAUL_DELAHAY, KATHRIN von BURG and ANDREW DZIEDZIC

Department of Chemistry, New York University, 4 Washington Place, Room 514,
New York, NY 10003, U.S.A.

Threshold energies (6.1 < Et“ 8.6 eV) are determined for photoelectron
emission by 16 inorganic cations in aqueous solution. Et‘s are correlated
with gas-phase ionization potentials, solvation and reorganization free
energies, standard reduction potentials and 1ligand field stabilization
energies (five transition metals). Dielectric saturation is shown to

drastically lower threshold energies.

Threshold energies (ca. +0.1 eV) were recently obtained and interpreted
{1,2] for photoelectron emission by various inorganic anions in aqueous
solution. This work is extended to aqueous solutions of inorganic cations in
the present paper.

1. Determination of threshold energies

Yields for photoelectron emission by solutions into water vapor were
measured (1] as a function of photon energy (fig. 1). Anions with high
threshold energiés were seiected to avoid emission by anions in the range of
photon energies in which cations were investigated. Complexation (3] of the
cation was avoided whenever possible. Hydrolysis (4] of the cation being
photofonized and/or its photoionization product was minimized by addition of
acid whenever necessary. Photoelectron emission by water (1] was totally
negligible.

Threshold energies for emission were obtained (1,2] from emission spectra
by extrapolation on the basis of the Brodsky-Tsarevsky theory [5]. A plot of
the yield Y to the power 0.4 or 0.5 against photon energy is linear according
to this theory, and extrapolation to zero yield gives the threshold energy




E,. Selection of the proper exponent fs discussed in [2] and (5] . The best
plots were obtained by least square treatment _of‘ data, and the proper choice
of exponent of Y was confirmed by calculation of correlation coefficients.
The proportionality between the yield and the cation concentration was
verified within ~ 10 percent for all cations (in general, 1, 0.5 and 0.2 M
solutions) at constant anion concentration. This procedure insured that
emission by the anion was negligible in the range of photon energies .in which
the yield was proportional to the cation concentration.

Threshold energies Et are listed in Table 1. The slight varifation of
Et from one anfon to another for a given cation 1is essentially within
experimental error. The standard deviation was 0.0l to 0.03 eV except for the
6 M acid solutions for which it was 0.06 to 0.08 eV because of a Tlow signal
(presumably because of scavenging of electrons by hydrogen ions). The effect
of scavenging was also observed with reducible cations and i{s Dbeing
investigated. E, fincreased by 0.5 to 1 ev (vs. neutral solution) by
addition of acid (>2 M) for MnZ*, Co?*, Ni1?*. Addition of an alkali
metal salt of the acid (> 2 M), instead of the acid, did not cause Et to
increase significantly. Et for the acid was higher than for the alkali
metal salt of the same anion as the acid, e.g., 9.08 eV for 6 M HC1 vs. 8.77
eV for C1” in neutral solution (presumably because of removal of low-energy
electrons by scavenging). This increase in E, for C1” in 6 M HCl, for
instance, allowed the determination of Et = 8,60 eV for COZ+ without

interference by the anion.

2. Threshold energy, ionization potential, reorganization and solvation free
energies
The free energy for photoelectron emission by an aqueous solution of

cation H”(aq) will be correlated with the free energy for gas-phase

fonization of MZ* (g). The reference level of free energies must be changed
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; for that purpose. The problem is discussed in detail by Noyes (7,8], and only
essential points will be mentioned. The surface potential at the solution-
water vapor interface (~ 0.1 to 0.2 V for water [9]) is neglected here.
Free energies must be changed from their conventional values (i.e., in
tables (10]) té the reference level of an electron in the gas phase at

infinity at the same outer potential [11] as the solution. Consider the

reactions,
ME*(aq) + H'(aq) = M(Z*1)*(aq) + % Hy(g) (1)
3 Hplg) = H(aq) + e7(g) (2)
W2 (ag) = M(Z*)*(aq) + e7(g). (3)

for which (g) and (aq) specify the gas phase and solution, respectively. The
free energies are (fig. 2): the conventional value aG for (1); A6y = 4.50
ev (8] for (2); 46 + 56, for (3). Likewise, the conventional free
energies of solvation of MZ'(aq) and M(Z*1)*(aq) AGé and AG(Z:+1
are converted to AGsz = Aec‘ + z 4Gy and AGSZ+1 = AGczfl + (2+1) 4G,

respectively.

Photoionization of Mz*(aq) yields 1initially the species M(z’1)+(aq*)
under coﬁditions governed by the Franck-Condon principle. The solvent about
this ion undergoes reorganization to yield the ion M(z*1)+(aq) in a process
characterized by the reorqanization free energy AG:*I.

Two basic equations follow from fig. 2: :
4@?(9) a AG: - AG:+1 + 86+ A6y (4)
06%(aq) = s6§(g) + a6 - a6l - agZ" (5)

L e

where AG:(RQ) and Asf(g) are, respectively, the free energies for

photoelectron emission by the solution and gas-phase ionizatfon. A third

equation follows from fig, 2 or can be obtained by combination of (4) and (5),
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2 2+1
Ase(aq) = MG+ MG, - M. (6)
One has AG:(aq) = E, to a good approximation since measurements
yield free energies for photoelectron emission. AGf(g) can  be

2+

calculated from (4), e.g., 29.81 and 30.51 eV, respectively, for Cr and

Fel* (data from Table 1). The necessary AG:’I, however, 1is generally
not available and therefore we shall use ionization potentials 1% instead
of Asf(g) in sec. 3. The I%'s are enthalpies, but we set Aef(g)
= 1% and thus neglect a minor entropy correction.

Reorganization free energies AG:+1 can be computed from (5), e.g.,
2+ 2+ on the basis of the

-2.05 and -2.11 eV, respectively, for Cr™ and Fe

3

AG%(g) calculated above from (4) for these two cations. Since AGS

= 45.08 and 44.87 eV for Cr3" and Fe, respectively, one has lGil << lAGil
for Crz+ and Fez*. Hence, the ion M(Z+1)+(aq*) produced by vertical
transition in the photocionization of MZ+(aq) is energetically not very
different from M(z+1)+(aq).

The orientation polarization of the solvent about M(Z+1)*(aq*) is the
same as for MZ+(aq) (Franck-Condon principle). Conversely, the electronic

(Z+1)*(aq*) is the same as for

polarization of the solvent about M
M(Z+1)+(aq) except for a secondary effect arising from the different
orientation polarizations for these two ions. Since the free energies of
M(z*1)+(aq*) and M(z*1)+(aq) are quite close, as shown above, the
orfentation polarization about Mzﬂbq)and M(z*l)th)must not be very
different. This can be the case only if there is strong dielectric saturation
of the solvent about these ions.

The preceding conclusion s in complete agreement with Noyes [7,8] who
calculated effective dielectric constants from solvation free energies and

crystallographic radit by application of the Born eguation. The resulting
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effective dielectric constants (well below 10) indicated strong dielectric
saturation. [t should be noted that the foregoing analysis, based on eq. (5)
does not involve the Born model of solvation.
3. Threshold energy and dielectric saturation

The calculation of AG:*I in sec. 2 was restricted to crd? and
Fe3* because of the lack of complete data for other cations. A method will
be developed in this section by which the essential role of dielectric
saturation will be established for all the cations of Table 1. The method
involves the Born model of solvation, but the approximation inherent to the
use of this model does not affect the conclusion to be drawn. Thus,

As:ﬂ . AG:*I + P2s P:*I(Pg) , (7)
where P: (> 0) is the orfentation polarization about MZ*1)*(ag») and
P:*]'(P:) the correspondfng electronic polarization (see above). A
very small correction (< 0.05 eV) is neglected in (7) for the change of
salvation free energy of an electrically neutral species [7] as the cavity
radius changes from the value for P: to that for P:"I.

Ore has, :

a6 < P2+ p2*1(p2) < |ag?*, (8)
and consequently we set

pZ + p{¥*1)(p2) & . 8862 (9)
where the coefficient 8 (> 1) is to be determined from experimental data and
calculated from a model. Equation (5}, (7) and (9) yield,

46Z(aq) = 46G3(s) + B - 1) a6l (10)

The coefficient 8 can be calculated from the Born equation. Thus,

oo Uzt -etya-eh e el -y,
where ¢ 0 is the optical dielectric constant of water and ¢ its static

dielectric constant in the absence of dielectric saturation. One computes
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from (11), 8 = 2,33, 1.55, 1.34 for z = 1, 2, 3, respectively, in the absence

of dielectric saturation (¢ = 78.36). Conversely, one has 38 = [(2+1)/z J2
for complete saturation (¢ = so), that is, 8 =4, 2,25, 1.78, respectively,
for zs1, 2, 3. '
Values of 8 calculated from (10) with AGf(g) = 12 (see above) are
listed in Table 1. The ionization potentials 12 (from (4] except for Crz’
and Fe3+ (6]) are more recent and in some cases slightly different from
those used by Noyes (from (10]) in the calculation of conventional solvation
free energies. This minor inconsistency is of no consequence in the
interpretation of 8. The B8-values of Table 1 are close to those calculated
from (11) for complete dielectric saturation. Equation (11) 1is approximate
(Born model), and partial hydrolysis and/or complexation may cause 3 to be
higher than expected for the ifonic charge z+. Moreover, the value of 3 is
not very sensitive to AG:(aq). Despite these reservations, one can
safely conclude that there is strong dielectric saturation of water about the
cations of Table 1. Reorganization free energies would be much higher in the

absence of dielectric saturation, and the threshold energies of cations in

aqueous solution are drastically lowered by strong dielectric saturation of
the solvent about the cations. '
4. Threshold enerqy, standard potential and reorganization free energy
The free energy 4G in (6) pertains to reaction (1) which is written as an
oxidation. Hence, 26 = ]e[E® (in eV) where E® is the standard reduction
potential for the Hz’l(aq)lﬂz’(aq) couple. Equation (6) becomes (in eV)
262(aq) = |e|€® + 4.50 - s63*1, (12)
where 4G, = 4.50 eV was introduced (sec. 2). The free energy (ca. 0.1 to
0.2 ev [9]) for the surface potential should be added on the right hand side
of (12).

e YT £ AW K e e s dme e = te s oo o
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Equation (12) clearly shows the relationship between the free energies
AG:(aq) and AG for photoelectron emission and thermodynamics in the
oxidation of M**(aq) to Mz*l(aq). &6, arises from the change of
reference levels for free energies, and - AG:*I is the additional free
energy required by the Franék-Condon principle. The negative of the
reorganization free energy can be regarded as the counterpart of the
overvoltage in the electrochemical oxidation of Mz*(aq).

Reorganization free energies calculated from (12) are nearly the same
(-2.05 to -2.25 eV) for the five cations of fig. 3 (E%'s from (41, (121).
Since AGa is nearly constant, a plot of E, against le | E° (2,13] is
linear, to a first approximation, and has a unit slope (fig. 3). Standard
reduction potentials can be deduced from such a plot and Et (for chemically
similar cations) for species that are unstable in aqueous solution, e.g.,

€% 1.75 V for Ni3*/N1%* 1n 6 M HCT (using 4G, = -2.1 eV).

S. JThreshold enerqy, 1{onization potential and ligand field stabilization
energies (LFSE)

The M2+(aq) and M3+(aq) fons of V, Cr, Mn, Fe, Co exist as hexaquo

ions (4], AG:(aq) therefore include the difference 4E, between the
LFSE's for M3+(aq) and MZ+(aq) ions in an octahedral field. IZ for
these metals obviously does not include AEf. Hence the correlation between
I2 and Et is partially masked (for Cr, in particular, fig. 4) by the LFSE
effect. The correlation, however, 1is evident when Iz and Et + AEf are
compared. Thus, 1Z - (E, + 4E,) and 862 - 263 + 263 - &, (cf.
eq. (5)) are nearly constant from V to Co whereas 2. €, is not.
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Table 1

Threshold energies, coefficient 2 and relevant data

E, 1* (4,6] - a6l 8

) eV eV
Ag'  7.60 (C107), 7.52 (C107, 5 M HCLO,) 21.48 4.95 3.80
' 7.0 (F7), 7.46 (C105, 5 M HC10,) 20.42 3.55 4.67
v2*  6.38 (5027, 1 M H,S0,) 29.31  19.14 2.20
cr?*  6.14 (C17, 1 M HCY) 30.95  19.32 2.28
MnZ*  8.08 (C17, 2 M HC1) 33.70  18.9% 2.35
Fe?*  7.35 (C17, 1 M HCY), 7.38 (5037) 30.64  19.63 2.18
Co?*  8.60 (C1°, 6 M HC1) 33.49  20.88 2.19
N2 8.35 (C1°, 6 M HC1) 6.16  21.40 2.30
c®*  7.83 (C10;, 1 M HC10,), 7.84 (SO37) %.4 2.5 2.3
sn?* 7.21 (C17), 7.62 (€10, 6 M HC1O,) 30.49  16.14 2.44
P2 7.23 (C10), 7.10 (C10;, 6 M HCI0,) 31.92  15.49 2.59
13" 7.15 (C107) 54.42 42,57 2.1
T3 6.9 (€17) 43.25  42.01 1.87
vt 7,06 (C1) 47.7 24.2 1.92
¥ 7.3 (1), 7.27 (5037) 50.8  45.04  1.97
Fe3* 7.03 (C1=), 7.05 (C1=, 6 M HCI04) 56.8 44,87 2.11

See sec. 1 for standard deviation, asi for v3* calculated from (4)
with 4G = -0.25 eV (sec. 4).




Fig. 1.

Fig. 2

Fig. 3

Fig. &

10

Captions to Figures

Photoelectron emission spectra of Fe2+. (A) 1 M FeSO4; (8) 0.5
M FeSO4 + 0.5 M L12$04; (C) 0.2 M FeSO4 + 0.8 M L12$04.

2+

Photoelectron emission only by Fe below the threshold energy

2-
(Et s 8,65 eV) for SO4 .

Free energy diagram. Upward and downward arrows, respectively, for
positive and negative free energies. The superscrips 2z and z+l
denote the positive ionic charge. The symbols (g) and (aq) refer to
gas phase and solution, respectively. Free energies: 4G%(q),

86%*Y(g), 26%(aq), 46%*1(aq) of ons; 46  for  reaction
(1); AGH for (2)s Asz and AG§+1 conventional values
for solvation; Asg, AG§+1 values for solvation corrected
for AGH; AG:*I reorganization; Asﬁ(g) gas-phase ionization;

AG:(aq) photoelectron emission by Solution.

Plot of threshold energy Et and reorganization free energy AGr3
against |e| E9. Standard reduction potentials E° from [4,12] .
The E%'s for Mn3+/Mm2+ and Co3+/Coz* are approximate (ca.
+0.05 V). The symbol M,.3+ stands for M3+(aq*).

Correlation between the jonization potential 12 and the threshold
energy Et corrected for the difference AEf between the LFSE's

tor M and i in an octahedral field. Values of AE¢ from (14].
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